Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
2.
Clin Infect Dis ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2327680

RESUMEN

COVID-19 convalescent plasma (CCP) use between October-December 2020 was characterized using the National Inpatient Sample database. CCP was administered in 18.0% of COVID-19-associated hospitalizations, and was strongly associated with older age and increased disease severity. There were disparities in the receipt of CCP by race and ethnicity, geography, and insurance.

3.
Ann Intern Med ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2313433
4.
Expert Rev Respir Med ; 17(5): 381-395, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2313432

RESUMEN

INTRODUCTION: When the COVID-19 pandemic struck no specific therapies were available and many turned to COVID-19 convalescent plasma (CCP), a form of antibody therapy. The literature provides mixed evidence for CCP efficacy. AREAS COVERED: PubMed was searched using the words COVID-19 and convalescent plasma and individual study designs were evaluated for adherence to the three principles of antibody therapy, i.e. that plasma 1) contain specific antibody; 2) have enough specific antibody to mediate a biological effect; and 3) be administered early in the course of disease. Using this approach, a diverse and seemingly contradictory collection of clinical findings was distilled into a consistent picture whereby CCP was effective when used according to the above principles of antibody therapy. In addition, CCP therapy in immunocompromised patients is useful at any time in the course of disease. EXPERT OPINION: CCP is safe and effective when used appropriately. Today, most of humanity has some immunity to SARS-CoV-2 from vaccines and infection, which has lessened the need for CCP in the general population. However, COVID-19 in immunocompromised patients is a major therapeutic challenge, and with the deauthorization of all SARS-CoV-2-spike protein-directed monoclonal antibodies, CCP is the only antibody therapy available for this population.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Sueroterapia para COVID-19 , Inmunización Pasiva , Anticuerpos Monoclonales
5.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2319626

RESUMEN

Recent 2022 SARS-CoV-2 Omicron variants, have acquired resistance to most neutralizing anti-Spike monoclonal antibodies authorized, and the BQ.1.* sublineages are notably resistant to all authorized monoclonal antibodies. Polyclonal antibodies from individuals both vaccinated and recently recovered from Omicron COVID-19 (VaxCCP) could retain new Omicron neutralizing activity. Here we reviewed BQ.1.* virus neutralization data from 920 individual patient samples from 43 separate cohorts defined by boosted vaccinations (Vax) with or without recent Omicron COVID-19, as well as infection without vaccination (CCP) to determine level of BQ.1.* neutralizing antibodies and percent of plasma samples with neutralizing activity. More than 90 % of the plasma samples from individuals in the recently (within 6 months) boosted VaxCCP study cohorts neutralized BQ.1.1, and BF.7 with 100 % neutralization of WA-1, BA.4/5, BA.4.6 and BA.2.75. The geometric mean of the geometric mean 50 % neutralizing titres (GM (GMT50) were 314, 78 and 204 for BQ.1.1, XBB.1 and BF.7, respectively. Compared to VaxCCP, plasma sampled from COVID-19 naïve subjects who also recently (within 6 months) received at least a third vaccine dose had about half of the GM (GMT50) for all viral variants. Boosted VaxCCP characterized by either recent vaccine dose or infection event within 6 months represents a robust, variant-resilient, neutralizing antibody source against the new Omicron BQ.1.1, XBB.1 and BF.7 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Vacunación , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales
6.
Lancet Infect Dis ; 22(11): e311-e326, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2308470

RESUMEN

Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus , Pandemias , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Anticuerpos Neutralizantes
8.
mBio ; 14(3): e0042823, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2304328

RESUMEN

Measurement of antibody content and function after a viral illness is important for diagnosis and selection of the best convalescent plasma (CP) units for passive immunization. Zhang et al. (mBio 14:e03523-22, 2013, https://doi.org/10.1128/mbio.03523-22) analyzed over 19,000 coronavirus disease 2019 (COVID-19) CP (CCP) samples from the early days of the COVID-19 pandemic and reported a moderately strong correlation between antibody amount and neutralizing titer. Strikingly, about one-third of the samples had little or no neutralizing activity. The results provide a detailed glimpse of the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in immunologically naive humans and reveal major differences in the quality of CP units collected for passive therapy before antibody screening. Heterogeneity in CCP quality undoubtedly contributed to the variable therapeutic efficacy. Analysis of the COVID-19 serology data suggest that, for the next infectious disease emergency, the best approach after quick establishment of methods for robust antibody-level stratification would be to use CP units in the top quintile of antibody content and neutralizing capacity.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Pandemias , Anticuerpos Antivirales , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes , Inmunización Pasiva/métodos
9.
J Virol ; 97(1): e0184722, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2296874
10.
mSphere ; 8(1): e0060722, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2263909
12.
mSphere ; 8(2): e0011923, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2249388

RESUMEN

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
13.
mBio ; 14(2): e0058323, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2249387

RESUMEN

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
14.
J Virol ; 97(4): e0036523, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2249386

RESUMEN

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Asunto(s)
COVID-19 , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Laboratorios/normas , Investigación/normas , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Error Científico Experimental , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Quirópteros/virología , Animales Salvajes/virología
15.
Transfus Apher Sci ; : 103521, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2253908
16.
Annu Rev Immunol ; 40: 121-141, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2253906

RESUMEN

Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.


Asunto(s)
Micosis , Animales , Hongos , Humanos , Inmunidad Innata , Huésped Inmunocomprometido , Macrófagos , Mamíferos
17.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2253907

RESUMEN

COVID-19 in immunocompromised hosts has emerged as a difficult therapeutic management problem. Immunocompromised hosts mount weak responses to SARS-CoV-2 and manifest infection outcomes ranging from severe disease to persistent infection. Weakened immune systems mean greater viral loads and increased opportunities for viral evolution. Gupta, Konnova, et al. report the emergence of resistant SARS-CoV-2 variants in immunocompromised patients after monoclonal antibody (mAb) therapy. mAbs target only a single determinant in the viral Spike protein, which is a weakness of such therapy when treating a mutagenic and variable virus. Hence, the emergence of mAb resistance could have been anticipated, but its documentation is important because it has major public health implications, since such resistant variants have the potential to spread and escape vaccine immunity. For immunocompromised patients, these findings suggest the need for combination therapy with antiviral drugs and the use of polyclonal antibody preparations such as convalescent plasma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales/uso terapéutico , Salud Pública , Sueroterapia para COVID-19 , Huésped Inmunocomprometido , Anticuerpos Antivirales , Anticuerpos Neutralizantes
18.
19.
Clin Infect Dis ; 76(11): 2018-2024, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2228195

RESUMEN

Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Sueroterapia para COVID-19 , Huésped Inmunocomprometido , Inmunización Pasiva , Anticuerpos Antivirales/uso terapéutico
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA